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SUMMARY

This paper analyses a method of coupling systems of conservation laws with examples in two �uid
�ows. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of complex problems, di�erent mathematical models are frequently used
in di�erent regions of interest. For instance, one can take into account some physical e�ects
(multi-dimensional e�ects, compressibility, temperature variations, Joule e�ect in the following
example, etc.) in some domain where they are supposed to be important or assume that they
are negligible elsewhere which amounts to drop the corresponding terms in the equations of
the complete model. We have studied an example of this situation in the context of plasma
�uids with two di�erent current densities. Also di�erent closure relations may be considered.
A simple example of this last situation which we analyse below is provided by the �ow
of two perfect �uids with di�erent equations of state separated by a moving interface. This
leads to couple di�erent systems and we consider a coupling procedure which was initially
motivated by numerical considerations (see References [1, 2]).
We are thus interested in the coupling of non-linear hyperbolic systems of conservation laws

at an interface which we assume, for simplicity, is �xed. In the scalar case, the complete study
from both mathematical and numerical points of view was considered in Reference [3]. Here,
we take up the coupling of systems and the situation is far more complicated although we
restrict ourselves to the one-dimensional case and to systems of the same size. Only in the
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linear case is it possible to justify completely the analysis of the continuous problem. We can
also study coupled Riemann problem corresponding to an initial data constant on each side of
the interface. Though simple in their formulation, they already provide interesting features.

2. DEFINITION OF THE COUPLED PROBLEM

Let �⊂Rd be the set of states and let f�; �=L; R, be two ‘smooth’ functions from � into Rd.
Given a function u0 : x∈R→ u0(x), we want to �nd a function u : (x; t)∈R×R+ → u(x; t)∈�;
satisfying

@u
@t
+
@
@x
fL(u)= 0; x¡0; t¿0 (1)

@u
@t
+
@
@x
fR(u)= 0; x¿0; t¿0 (2)

and the initial condition

u(x; 0)= u0(x); x∈R (3)

We assume that systems (1) and (2) are hyperbolic, i.e. for �=L; R, the Jacobian matrix
A�(u) ≡ f ′�(u) of f�(u) is diagonizable with real eigenvalues ��; k(u) and corresponding eigen-
vectors r�; k(u); 16k6d. At the interface x=0, Equations (1)–(3) are supplemented with cou-
pling conditions. These conditions are determined in order to obtain two well-posed boundary
value problems on each side of the interface. Given a boundary state b, an admissible bound-
ary condition at x=0, for instance for system (2), is de�ned following Reference [4] through
a condition of the form u(0+; t)∈OR(b(t)); t¿0, where the set OR contains the possible traces
on x=0 of the solutions of Riemann problems for system (2) between the left state b and
any right state. There are other more fully justi�ed de�nitions of boundary sets O(b) (see,
Reference [5]); however, this condition is convenient for practical purposes. For the coupled
system we thus require

u(0−; t)∈OL(u(0+; t)) and u(0+; t)∈OR(u(0−; t)) (4)

(see, Reference [6] for details) with obvious notation for the boundary set OL corresponding
to (1).
This coupling procedure was �rst introduced from numerical considerations. Indeed, a nu-

merical coupling procedure was used by Abgrall and Karni [1] or Pougeard-Dulimbert [2],
and in Reference [3] we proved that this lead in the scalar case to this continuous coupling
condition.
Let us now precise the numerical approximation of problem (1)–(3) and (4). We use

a �nite volume scheme: given a uniform mesh space �x and a time step �t, we set
�=�t=�x; xj+1=2 =

(
j + 1

2

)
�x; j∈Z; tn= n�t; n∈N, and u0j+1=2 = 1=�x

∫ xj+1
xj

u0(x) dx; j∈Z.
Then, for �=L; R, we are given a numerical �ux function g� : �2 →Rd consistent with f� and
we consider the three-point numerical scheme

un+1j−1=2 = unj−1=2 − �(gnL; j − gnL; j−1); j6 0 (5)

un+1j+1=2 = unj+1=2 − �(gnR; j+1 − gnR; j); j¿ 0 (6)
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where gn�; j= g�(unj−1=2; u
n
j+1=2); �=L;R. The coupling of the di�erence schemes is performed

through the evaluation of gn�;0 = g�(u
n
−1=2; u

n
1=2); �=L;R. Since in general g

n
L;0 �= gnR;0, the overall

numerical scheme (5), (6) is not conservative. We proved that in most signi�cant scalar
situations, the scheme converges and that the limit solution satis�es (1)–(4). Note that (4)
leads in many cases to the continuity at the interface u(0−; t)= u(0+; t).
We now develop a detailed analysis of the coupling in the abstract linear case with constant

coe�cients.

3. THE COUPLING OF LINEAR SYSTEMS

Assume throughout this section

f�(u)=A�u (7)

where the matrix A� is a real d × d matrix. The well-posedness of the coupled Cauchy
problem depends on the number of entering or outgoing characteristic lines on each side of
the interface; this problem may be well- or ill-posed (in the sense that it possesses a continuum
of solutions). We suppose that the eigenvalues ��; k (associated with the eigenvectors r�; k) of
the matrix A� are real, distinct and ordered as

�L;1¡�L;2¡ · · ·¡�L; qL¡06�L; qL+1¡ · · ·¡�L; d (8)

�R;1¡�R;2¡ · · ·¡�R; qR60¡�R; qR+1¡ · · ·¡�R; d (9)

We denote by l�; k the corresponding eigenvectors of AT� and asume the normalization
lT�; j·r�; k = �jk ; 16j; k6d. The description of set O�(b) is classical (see Reference [7] for
instance) and we obtain by interpreting (4) that any solution of the coupled linear problem
satis�es

lTL; k · u(0−; t)=
{
lTL; k · u(0+; t); 16k6qL
lTL; k · u0(−�L; k t); qL + 16k6d

(10)

and

lTR; k · u(0+; t)=
{
lTR; k · u0(−�R; k t); 16k6qR
lTR; k · u(0−; t); qR + 16k6d

(11)

Since with any solution u(0±; t) of (10)–(11), one can associate in a unique way a solution u
of the coupled problem—indeed the boundary values together with the initial data u0 allow us
to solve separately the initial boundary value problems for x¡0 and x¿0—the linear coupled
problem has a unique solution if and only if system (10), (11) of 2d linear equations in the
2d unknown components of u(0±; t) has a unique solution. This leads us to consider three
cases, depending on the sign of qL − qR.
Case (i): qL = qR. It is the simplest case and we can prove easily

Theorem 1
In the case (7), assuming (8), (9) and

qL = qR = q
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the coupled problem (1)–(4), has a unique solution if and only if the sets {lL;1; : : : ; lL;q;
lR;q+1; : : : ; lR; d}, {lR;1; : : : ; lR;q; lL;q+1; : : : ; lL;d} are two bases of Rd. The coupling conditions (10),
(11) then yield the continuity of u at the interface

u(0+; t)= u(0−; t) (12)

Case (ii): qL¡qR. Let us set

q= qR = qL +m; m¿1 (13)

and introduce the space E=[rR;1; : : : ; rR;q] ∩ [rL;q−m+1; : : : ; rL;d]. We shall assume
dimE=m (14)

The coupling conditions (10), (11) require that the ‘jump’ v at the interface be in E, where

v(t)= u(0+; t)− u(0−; t) (15)

The coupling problem has a unique solution if we can determine uniquely v and say u(0−; t),
satisfying

lTL;k · u(0−; t) = lTL;k · u0(−�L;k t); qL + 16k6d (16)

lTR;k · u(0−; t) + lTR;k · v(t) = lTR;k · u0(−�R;k t); 16k6qR (17)

De�ning the space F = {l ∈ [lR;1; : : : ; lR;q]; lT · rL; i=0; 16i6q−m}, and letting E◦ denote the
orthogonal of E in Rd, we have

Theorem 2
In the linear case (7), assuming (8), (9), (13) and (14) with

the p vectors lR;1; : : : ; lR; q−m; lL; q−m+1; : : : ; lL; d are linearly independant (18)

the coupled problem (1)–(3) and (4) has a unique solution if and only if the subspaces E
and F satisfy E◦ ∩ F = {0}.
Proof
Condition (14) is equivalent to state that lL;1; : : : ; lL; q−m; lR; q+1; : : : ; lR; d are linearly independent,
which is a necessary condition to solve (16), (17). Hypothesis (18) ensures that dimF =m.
Then some computations show that (17) resumes to a linear system in the m components of
v in E of the form

lTi · v(t)=known right-hand side; q−m+ 16i6q
where the li’s are a basis of F . This system is uniquely solvable if E◦ ∩ F = {0}.
This result provides an easy way to check that the coupled problem is well-posed. We shall

illustrate this case in the next section.
Case (iii): qL¡qR is easily handled with and we can state
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Theorem 3
In the linear case (7), assume (8), (9) and

qL¿qR (19)

and, moreover, that the d+ qL − qR vectors lL;1; : : : ; lL; qL ; lR; qR+1; : : : ; lR; d span Rd and that the
d− (qL − qR) vectors lR;1; : : : ; lR; qR ; lL; qL+1; : : : ; lL; d are linearly independent. Then the solutions
of the coupled problem (1), (2), (3) and (4) form an a�ne variety of dimension qL−qR. Any
solution u satis�es (12). Moreover, such a solution is uniquely determined if, in addition, the
values of lTk · u(0; t); qR + 16k6qL, are prescribed at the interface x=0.

4. TWO FLUID FLOW (IN LAGRANGIAN CO-ORDINATES)

Consider the system of gas dynamics in Lagrangian co-ordinates

@u
@t
+
@
@x
f(u)= 0; u=(�; v; e)T; f(u)= (−v; p; pv)T (20)

In (20), x stands for a mass variable and � denotes the speci�c volume, v the velocity,
e= �+ 1

2 v
2 the speci�c total energy, � the speci�c internal energy, and p=p(�; �). We study

the coupling of two such systems at a contact discontinuity located at x=0 and separating
two �uids with di�erent equations of state p=p�(�; �); �=L;R. For instance for two ideal
gases p=(�− 1)�=� with �= �L or �R. Let f�(u); �=L;R, denote the corresponding �uxes.
We begin by considering the linearized case, i.e. the coupling of two gas dynamics system

linearized at two constant states uL and uR separated by a material discontinuity which thus
satisfy the continuity of the velocity and pressure

vL = vR ; pL(�L; �L)=pR(�R ; �R) (21)

We have (7) with A�=A�(u�); �=L;R, where A(u) is the Jacobian matrix of f(u) given
(using the usual notations p�= @p=@�(�; �); p�= @p=@�(�; �)) by

A(u)=




0 −1 0
p� −vp� p�
vp� p− v2p� vp�




Here d=3 and �1 = − C¡�2 = 0¡�3 =C where C=
√−p� + pp� denotes the Lagrangian

sound speed. Recall that the (right) eigenvectors of A(u) can be chosen as

r1(u)=




−1
−C
p− Cv


 ; r2(u)=



p�
0

−p�


 ; r3(u)=




−1
C

p+ Cv




We are in situation (ii) of Section 3 with qL =1 and qR = q=2, m=1. One can prove that
the dimension of the subspace E=[rR;1; rR;2] ∩ [rL;2; rL;3] is indeed equal to 1, and applying
Theorem 2, that imposing the continuity of the pressure and velocity at the material interface
leads to two well-posed linearized boundary value problems.
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We pass to the coupling of two non-linear gas dynamics systems at a contact discontinuity.
Given a left state uL, we denote by S1R(uL) the 1–wave curve consisting of states u which can
be connected to uL on the right by either a 1−shock or a 1−rarefaction wave corresponding to
the equation of state p=pR(�; �). Similarly, given a right state uR, we denote by S3L(uR) the
3-wave curve consisting of states u which can be connected to uR on the left by a 3−shock
or a 3−rarefaction wave corresponding to the equation of state p=pL(�; �). We denote by
S1
R(uL) (resp. S

3
L(uR)) the projection on the (v; p)-plane of S

1
R(uL) (resp. S

3
L(uR)).

Proposition 1
Assume that for any pair of states (uL; uR) the curves S1

R(uL) and S3
L(uR) may intersect at

one point at most. Then, the coupling conditions (4) are equivalent to

v(0+; t)= v(0−; t); p(0+; t)=p(0−; t) (22)

Since the curve S1
R(uL) (resp. S

3
L(uR)) is tangent to r

1
R(uL) (resp. r

3
L(uR), the assumption

on the wave curves is indeed satis�ed and linked to the assumption for the linear system that
dimE=1. The coupled problem is well-posed.

5. AN EXAMPLE OF A FLUID MODEL IN PLASMA PHYSICS

We consider a classical two-temperature ion–electron plasma model which, after some
simpli�cations, may be written in a conservation form (1), (2) with

u=(�; �v; �s; �se)T; f�(u)= (�v; �v2 + p+ pe; �sv; �sev�)T (23)

�; v; p (resp. pe), are the mass density, mean velocity, pressure of the ion (resp. electron)
�uid and v�= ve is the electron velocity which equals v in a zone where the Joule e�ect is
neglected

v�= ve = v− 	�
�

where 	L =0; 	R =	¿0 (24)

Thus, only the 4th equations di�er on each side of the interface. We also have the closure
relations between the pressure and entropy p=(�s)�; pe = (�se)�; �= 5

3 . We shall assume that
	 is constant. The eigenvalues are v; ve; v±c, and the system is indeed hyperbolic, except when
�c=	 where c2 = �(p + pe)=�. We have �rst studied the Riemann problem for 	¿0 (the
case 	=0 is classical). Setting KL = s

�
L + s

�
e;L; K1 = s

�
L + s

�
e;R we can state

Theorem 4
Assume v�= ve = v− 	=�; 	¿0, and ve;L¡vL − cL. Then under the condition

PL + 	2
(
KL
PL

)1=�
¿(�+ 1)

(
	2
K1=�1
�

)(�=�+1)
if se;L¡se;R

(no condition if se;L¿se;R), the Riemann problem for (23) has a unique ‘admissible solution’.

By admissible solution, we mean a solution which depends continuously on the initial data
and consisting of constant states separated by contact discontinuities or rarefactions.
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Then we study the coupled Riemann problem assuming that the wave velocities are
ordered following ve¡v − c¡0¡v¡v + c. We are then in the situation of case (iii) of
Section 3.

Theorem 5
Assume the conditions

ve(0−; t)=
(
v− 	

�

)
(0−; t)¡(v− c)(0−; t)¡0¡v(0−; t)¡(v+ c)(0−; t) (25)

(v− c)(0+; t)¡0¡ve(0+; t)= v(0+; t)¡(v+ c)(0+; t) (26)

Then the self-similar solutions of the Riemann problem for (1), (2), (4), (23) form a one-
parameter family parametrised by s∗e ∈ [0; s∗e;max] where s∗e = se(0−)= se(0+) and

s∗e;max =



(
�
	2

)�( 1
�+ 1

(
PL + 	2

(
KL
PL

)1=�))�+1
− s�L



1=�

For the numerical computations of these solutions, we have tested various methods of
upwind type and observed that they converge towards nearly the same solution corresponding
to a value of the parameter s∗e depending on the equation of state, i.e. on the adiabatic exponent
�, and on the initial conditions (we refer to Reference [6] for details). We cannot characterize
simply this solution which is not stable with respect to a regularizing process. In the scalar
case, however, we have seen [3, corollary of Theorem 7] that, when the initial data u0 is
continuous, the sequence of discrete solutions converges to the unique solution of the coupled
problem corresponding to u0(0+)= u0(0−)= u0(0). Numerical experiments in the case of the
coupled plasma problem with continuous initial data have lead indeed to realistic results (see
Reference [8]).
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